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14  ALTERNATIVES AND MODIFICATIONS

14.1  Alternative Statistical Tests

The nonparametric statistical tests described in this report are expected to perform well in a wide
variety of circumstances. However, in some situations alternative methods can be considered. As
mentioned in Section 2.4.1, there are many statistical tests that can be used for determining
whether or not a survey unit meets the release criteria. Any one test may perform better or worse
than others, depending on the hypotheses to be tested, i.e., the decision that is to be made and the
alternative, and how well the assumptions of the test fit the situation. Some possible alternatives
are discussed below.  

In evaluating statistical tests, generally one chooses the test that has the highest power among the
various alternatives. The power is compared when each test is set to have the same Type I error
rate, �. The Type I error rate is the probability that the null hypothesis will be rejected when it is
true. If the assumptions made about the data distribution are correct, the calculation of � forms
the basis for setting the critical value of the test statistic. If the assumptions are not valid, the
calculated value of � will differ from the true Type I error rate. The fewer assumptions that are
made, the more confidence can be placed in the calculation of the Type I error rate.

If a specific set of assumptions is made, the test results can be simulated using Monte Carlo
sampling techniques. Using a large number of simulations, the actual Type I and Type II error
rates for different tests can be compared. For each sample size, and specific set of assumptions, a
separate simulation must be performed. Although much can be learned about the relative
accuracy of statistical tests in this way, it is clearly not possible to explore every potential set of
assumptions.

An alternative is to look at large sample results. With very few exceptions,  it can be proved that
the average of a large enough number of random data points tends to be normally distributed
(Central Limit Theorem). In the same way, the power of statistical tests can be examined when
the sample sizes are large enough. Note that what is meant by large enough is not precisely
specified. Depending on the situation, large enough might be 10, or it might be 1000. If the
samples size is allowed to grow large enough, the asymptotic (i.e., in the limit of arbitrarily large
sample size) behavior of tests can be compared. Better large sample test behavior may be taken
to imply that a test is better for all sample sizes. In reality, it can only be used as an indication of
which test might be preferred.

One measure commonly used to compare statistical tests is called the relative efficiency. This is
defined as the inverse of the ratio of sample sizes needed to achieve a given level of statistical
power. If a test has relative efficiency of two relative to another, it requires half the sample size
to achieve the same power.  The asymptotic relative efficiency of one test to another, is the limit
of the relative efficiency when the sample size is arbitrarily large. 
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Wilcoxon Signed Ranks Test (WSR test)

The asymptotic relative efficiency of the WSR test compared to the Sign test can be greater or
less than one. That is, either might be better, depending on the data distribution. The WSR test
tends to be better when the data distribution is symmetric, and the Sign test tends to be better
when the data distribution is skewed. 
        
Student’s t-Test

Student’s t-test may be used if the data have a normal distribution. This is a more restrictive
requirement than that of symmetry, since every normal distribution is symmetric, but there are
many other distributions that are also symmetric. The assumption of normality should be   
checked before using this test. The Shapiro-Wilk test discussed in EPA/QA-G9 (1996) is one
such test. Others include the Kolmogorov-Smirnov test, Lillifor’s test, and the Chi-Squared test.

The asymptotic relative efficiency of the WSR test relative to the one-sample Student’s t-test
ranges from 0.864 to infinity.  As stated by Conover (1980):  “the Wilcoxon test never can be too
bad, but it can be infinitely good... .” The asymptotic relative efficiency of the WRS test
compared to the two-sample Student’s t-test has the same range, from 0.864 to infinity.  

Chen’s Test

Chen’s test (Chen, 1995) is a modification of the Student’s t-test that has been suggested for use
when data are from a positively skewed distribution. Simulations show that it is generally more
powerful than other forms of the t-test. However, this test can only be used in Scenario B. 

Lognormal Test

If the data are assumed to lognormal, the testing procedure of Land (1988) may be used. The
assumption of lognormality should be checked by testing the logarithms of the data for normality.
It is important to note that a test on the mean of a lognormal distribution cannot be performed by
using a Student’s t-test on the mean of the logarithms of the data. This is because the mean of the
logarithms of the data is the logarithm of the median of the original data. The behavior of this
test relative to others when the assumption of lognormality is violated has not been studied.

Bootstrap Methods

The bootstrap is a simulation technique (Efron and Tibshirani, 1993). In essence, the distribution
of concentrations in a survey unit is approximated by the empirical distribution (e.g., histogram)
of the sample data taken. If n measurements are made, these n measurements are randomly
sampled n times with replacement. Each time this is done, the mean of the random sample is
calculated. After this has been done a specified number of times (generally between 50 and 200),
the standard deviation of all of the random sample means is calculated. This is then used as the
estimate of the standard error of the mean. There are, in addition, several methods for computing
bootstrap t-statistics. Usually 1000 or more replications are recommended for the bootstrap t.
Bootstrap methods generally have good asymptotic properties, but can be sensitive to outliers,
and erratic when sample sizes are small.
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14.2  Retesting 

It may happen that  a survey unit fails the hypothesis test (i.e., the decision is made that the
survey unit does not meet the release criterion), yet the mean of the measured data is below the
release criterion. This is more likely to occur when the mean falls in the gray region than
otherwise. It analogous to the situation in which the mean is below the release criterion, but the
1�� upper confidence level on the mean falls above the release criterion. It may be that the
survey unit does meet the release criterion, but the hypothesis test was not powerful enough to
detect that with the number of samples taken. Under some circumstances, one might like the
option to take additional random samples and re-perform the hypothesis test on the entire set of
data. The major difficulty with this is that the Type I error rate will now be greater than originally
specified in the DQOs.

Sequential testing is performed when data are collected and analyzed in stages. It differs from
hypothesis testing in that at each stage a third alternative is added to the decision of whether or
not to reject the null hypothesis, namely, to collect more data before deciding. The usual
motivation for sequential testing is to reduce the expected total number of samples from that
required when all the sample are taken at one stage. Sequential versions of the WSR and WRS
tests are discussed by Spurrier and Hewett (1976). 

14.3  Composite Sampling

The number of measurements taken in a Class 1 survey unit may sometimes be driven more by
the need to locate small areas of elevated activity than by the need to achieve the specified
acceptable error rates for the statistical tests. When the scanning MDC is high, the sample size,
N, may need to be significantly increased, in order to decrease the area between samples on the
systematic grid. When this grid area, about A/N, is small enough, so that in turn the area factor is
sufficiently high, the result is a DCGL  that is detectable by scanning. If the sample size N isEMC

much greater than that required for the statistical tests, some number, m, of neighboring samples
might be composited to reduce the total cost of analysis. Suppose there are N = mn
measurements. Each composite represents a contiguous area of approximately the same
proportion of the survey unit, m(A/N). The number of composite measurements, n, should be
equal to or greater than the number of measurements required by the statistical test. When the 
elevated measurement comparison is performed against the composites measurement results, the
DCGL  should be divided by the number of samples included in each composite.  If theEMC

composite measurement is below DCGL /m, no individual sample contributing to theEMC 

composite could exceed the DCGL . EMC

If a composite measurement is flagged by the EMC, it may be necessary to reanalyze each
sample included in that composite to determine which of them, if any, actually exceed the
DCGL  or, alternatively, the area of the survey unit represented by that compositeEMC 

measurement should be reinvestigated. 


